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Why is understanding charm production important in HIC?

» Charmonium production: Braun-Munzinger, Thews, Greco ....

- Yield depends quadratically on the charm quark number in statistical,
kinetic, and coalescence models

- Enhanced charm production would lead to possible charmonium
enhancement instead of suppression, which was proposed as a
signal for QGP (Matsui and Satz)

- Expect charmonium suppression at RHIC but enhancement at LHC

» Charmed exotics production: Lee, Yasui, Liu & Ko (hep-ph/0707.1747)

- Consideration of the color-spin interaction leads to possible stable

charmed tetraquark meson T, (ud CC) and pentaquark baryon
®..(udusc)

- Enhanced charm production at LHC makes the latter a possible
factory for studying charmed exotics



Four stages of charm production in HIC

» Direct production: Meuller, Wang (92); Vogt (94); Gavin (96) .....

- Mainly from initial gluon fusions
- About 3 pairs in mid-rapidity at RHIC (from STAR collaboration)
- About 20 pairs in mid-rapidity at LHC

» Pre-thermal production: Lin, Gyulassy (95), Levai, Meuller, Wang (95).....

- Not important based on minijet gluons
- Production from initial strong color field?

» Thermal production from QGP: Levai, Vogt (97) .....

- Based on leading-order calculations
- Important if initial temperature of QGP is high

» Thermal production from hadronic matter: Cassing et al. (99), Liu & Ko (02)

- Such as TN—A_D and pN—A_D
- Expect small effect on charm production in HIC



Leading-order diagrams for charm production

1) gg — cc




Next-Leading-order diagrams for charm production

1) qq — ccg
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Virtual corrections to leading-order diagrams

1) gg — cc
2) gg — cC
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Charm quark production cross sections

P. Nason, S. Dawson & R.K. Ellis, NPB 303, 607 (1988)
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— Next-to-leading order
- - Leading order

— Next-to-leading order
- - Leading order

Next-to-leading order generally gives a larger cross section than
the leading order except in ggbar annihilation at high energies.




Thermal averaged charm production cross sections
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Thermal averaged cross sections are larger in next-to-leading order,
particularly in the gg channel. Slightly smaller if using massless partons




Charm production rate
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Production rate increases exponentially with temperature 9




Rate equation for charm production from QGP
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QGP fire-cylinder dynamics at LHC

» Longitudinally boost invariant and transversely accelerated — volume

V()= ﬂ{RO +%(T—To)2:|22'

* For Pb+Pb @ 5.5 ATeV, Ry~ 1.2 A3~ 7 fm

= Expecting the QGP formation time 7, to be less than ~ 0.5 fm/c
at RHIC, we take T, = 0.2 fm/c

= Taking transverse acceleration a=0.1 c%/fm, similar to that at RHIC ,,



Initial temperature of QGP formed in HIC

= Color glass condenstate: T. Lappi, PLB 643, 11 (2006)
- At LHC, energy density at 7 =0.07 fm/c: €~ 700 GeV/fm?3

- Assuming € decreases with time as 1/7 — ¢, ~ 245 GeV/fm?3
atr, =0.2 fm/c

- Using € ~ (T/160)* GeV/fm3* — T,~ 633 MeV at LHC

- At RHIC, ¢ ~ 130 GeV/fm3 at 7 = 0.1 fm/c — T,~ 361 MeV
atr, =0.5 fm/c

- Uncertainty is , however, large due to Qs dependence

» HIJING (Gyulassy and Wang) or AMPT: Lin et al., PRC 72,
064901 (2005)

- Initial transverse energy dE;/dy~3000 GeV at LHC
_dE;/dy 3000
mRir, 3x4.7°x0.2

£, ~ 226 GeV/fm® — T, ~620 MeV

- At RHIC, dE-/dy ~ 1000 GeV — ¢, ~ 33 GeV/fm® — T,~ 383 MeV
atz, =0.5 fm/c i



Temperature evolution at LHC

Entropy conservation —
0.8 — 1 1 r T - 1 * 1T T 1
g, ~ 500 GeV/fm3— T, =70MeV |

\ e, ~365GeVifme-— T,=T00MeV
0.6V € ~ 245 GeV/fm3--- T =0630MeV _

High temperature only exists briefly during early stage of QGP
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Time evolution of charm quark pair at LHC
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= Charm production in next-to-leading order is more than a
factor of two larger than in the leading order
» Results using massless gluons are slightly larger
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Initial temperature and charm quark mass dependence of

thermal charm production
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Increases with initial temperature but decreases with charm quark mass.
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Charm production at LHC for tau,=0.5 fm/c
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Similar results as 7,

= 0.2 fm/c, although initial temperature is lower
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Charm production from three-gluon interaction ggg—cc

Determine rate for §gg — CC from CC — QQ( via detailed balance

25(4)([)1 + P, +P;-Py - p5)oc <GCE—>gggV>n2qne6q
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Gluon density ~ 0.5/fm3at T
and much larger initially

» Negligible rate for massive
gluons as the threshold
becomes larger than the
charm pair mass

—— massless gluon = With massless gluons, the rate

10 = - massive gluon is comparable to that of

two-body processes
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Time evolution of charm quark pairs at LHC
including both two- and three-body interactions
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Significant thermal production of charms from QGP of massless gluons
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Nuclear modification factor for W. Liu & CMK, NPA 783,
electrons from heavy meson decays 233 (07); nucl-th/0603004
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Reasonable agreement with data from Au+Au @ 200A GeV

after including heavy quark three-body scattering. 18
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Summary

» Thermal charm production rate increases ~ exponentially with
the temperature of QGP.

= Next-to-leading order enhances thermal production rate by more
than a factor of 2.

= Charm production from three-gluon interactions is important if
gluons are massless.

» Thermal charm production could be important at LHC.

» Understanding thermal charm quark production is important for
understanding charmonium production in HIC.

» LHC provides the possibility to search for charmed exotics
such as charmed tetraquark mesons and pentaquark baryons.
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